128 research outputs found

    RATE OF FORCE DEVELOPMENT AND TIME TO PEAK FORCE DURING PLYOMETRIC EXERCISES

    Get PDF
    Rate of force development (RFD) during the first 100 and 250 msec of the positive acceleration phase of plyometric exercises and time to peak force were determined in 23 NCAA Div. I athletes. Subjects performed a countermovement jump (CMJ), cone hop (CH), tuck jump (TJ), single leg CMJ (SLJ), and squat jump with 30% 1 RM squat (SJ30) on a force platform. Results showed SLJ and SJ30 had lower RFD100 and higher time to peak force, while CH and TJ had higher RFD100 and shorter time to peak force. These findings are in agreement with previous research that shows that quick movement exercises have high RFD. However, RFD250 may be an inappropriate measure to classify very quick jumps, such as the CH, because RFD values approach zero or become negative when subjects are close to or already leaving the ground

    RELIABILITY OF THE REACTIVE STRENGTH INDEX AND TIME TO STABILIZATION DURING DEPTH JUMPS

    Get PDF
    Reliability of reactive strength index (RSI) and time to stabilization (TTS) was examined during three maximal effort depth jumps from 30cm (N=22). Measures of jump height (JH), ground contact time (CT), RSI and TTS were obtained and analyzed for reliability. The JH, CT and RSI were shown to be highly reliable from trial-to-trial (ICCsingle > 0.9). Time to stabilization was not reliable from trial-to-trial (ICCsingle < 0.5). The RSI can be used to monitor performance or to optimize the height of depth jumps. Results suggest that coaches utilizing these procedures with large numbers of athletes may be able to use a single measure of RSI rather than repeated trials. Time to stabilization reliability must be improved before attempting to use it to quantify the landing phase of plyometric exercises

    KINETIC RESPONSES DURING LANDINGS OF PLYOMETRIC EXERCISES

    Get PDF
    The objective of the current study was to compare landing impulse and peak ground reaction force (GRF) during a variety of plyometric exercises. Eight Division-I athletes who routinely trained plyometric exercises performed a single repetition each of countermovement jump (CMJ), drop jumps from 30 and 60 cm (DJ30 and DJ60), cone hop (CH), tuck jump (TJ), single leg CMJ (SLJ), and squat jump with 30% 1 RM dumbbell squat (SJ30). Landing impulses and peak GRF were evaluated on an AMTI force plate. One-way ANOVA indicated mean and total impulses and peak GRF differed across exercises, with CH and SLJ displaying lower values and DJ30 and SJ30 having higher values. Results indicate that when landing from various plyometric exercises landing impulses and GRF are different across the exercises

    ANTAGONIST CONDITIONING CONTRACTIONS IMPAIR AGONIST FUNCTIONING

    Get PDF
    This study assessed the effect of antagonist conditioning contractions (ACC) on the subsequent force and electromyography of an agonist. Twelve subjects performed isokinetic elbow flexion on a dynamometer in 4 test conditions including a baseline condition without, and 1, 3 and 6 seconds after, isometric triceps extension. Average peak torque (T), peak torque/body weight (T:BW), average power (P), and rate of torque development (RTD) were assessed. Electromyographic data were obtained from elbow extensors and flexors. A repeated measures ANOVA with post hoc analysis demonstrated that T, T:BW, P, and RTD were higher in the baseline, compared to the post ACC conditions (P &#8804; 0.05), and appears to be due to higher brachioradialis activation in the baseline condition in compared to some post ACC conditions (P &#8804; 0.05)

    Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Get PDF
    We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O&lt;sub&gt;3&lt;/sub&gt; concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way

    Tobacco\u27s Minor Alkaloids: Effects on Place Conditioning and Nucleus Accumbens Dopamine Release in Adult and Adolescent Rats

    Get PDF
    Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8 mg/kg), cotinine (0.5-5.0 mg/kg), anatabine (0.5-5.0 mg/kg), and myosmine (5.0-20.0 mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated

    Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010

    Get PDF
    Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4–5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m^−3 and 0.4 μg m^−3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% of OM on average and up to 62% of OM during three periods of transported biomass burning emissions: 26–28 July, 29–30 July, and 8–9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m^−3) and the high biomass burning contributions (1.2 μg m^−3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions

    Development of an erythropoietin prescription simulator to improve abilities for the prescription of erythropoietin stimulating agents: Is it feasible?

    Get PDF
    BACKGROUND: The increasing use of erythropoietins with long half-lives and the tendency to lengthen the administration interval to monthly injections call for raising awareness on the pharmacokinetics and risks of new erythropoietin stimulating agents (ESA). Their pharmacodynamic complexity and individual variability limit the possibility of attaining comprehensive clinical experience. In order to help physicians acquiring prescription abilities, we have built a prescription computer model to be used both as a simulator and education tool. METHODS: The pharmacokinetic computer model was developed using Visual Basic on Excel and tested with 3 different ESA half-lives (24, 48 and 138 hours) and 2 administration intervals (weekly vs. monthly). Two groups of 25 nephrologists were exposed to the six randomised combinations of half-life and administration interval. They were asked to achieve and maintain, as precisely as possible, the haemoglobin target of 11-12 g/dL in a simulated naïve patient. Each simulation was repeated twice, with or without randomly generated bleeding episodes. RESULTS: The simulation using an ESA with a half-life of 138 hours, administered monthly, compared to the other combinations of half-lives and administration intervals, showed an overshooting tendency (percentages of Hb values &gt; 13 g/dL 15.8 ± 18.3 vs. 6.9 ± 12.2; P &lt; 0.01), which was quickly corrected with experience. The prescription ability appeared to be optimal with a 24 hour half-life and weekly administration (ability score indexing values in the target 1.52 ± 0.70 vs. 1.24 ± 0.37; P &lt; 0.05). The monthly prescription interval, as suggested in the literature, was accompanied by less therapeutic adjustments (4.9 ± 2.2 vs. 8.2 ± 4.9; P &lt; 0.001); a direct correlation between haemoglobin variability and number of therapy modifications was found (P &lt; 0.01). CONCLUSIONS: Computer-based simulations can be a useful tool for improving ESA prescription abilities among nephrologists by raising awareness about the pharmacokinetic characteristics of the various ESAs and recognizing the factors that influence haemoglobin variability

    The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences

    Get PDF
    This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPA-COPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyytiälä, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign relevant for the analysis of possible future climates. A comprehensive land use analysis, provided on both 5 and 50 km scales, shows that the main vegetation types surrounding the site on both the regional and local scales are: coniferous forest (Scots pine and/or Norway spruce); mixed forest (Birch and conifers); and woodland scrub (e.g. Willows, Aspen); indicating that the campaign results can be taken as representative of the Boreal forest ecosystem. In addition to the influence of biogenic emissions, the measurement site was occasionally impacted by sources other than vegetation. Specific tracers have been used here to identify the time periods when such sources have impacted the site namely: biomass burning (acetonitrile and CO), urban anthropogenic pollution (pentane and SO&lt;sub&gt;2&lt;/sub&gt;) and the nearby Korkeakoski sawmill (enantiomeric ratio of chiral monoterpenes). None of these sources dominated the study period, allowing the Boreal forest summertime emissions to be assessed and contrasted with various other source signatures
    corecore